

OUTLINE

- A. MAINTENANCE DOSE
- **B. STEADY STATE CONCENTRATION**
- c. HALF-LIFE
- D. LOADING DOSE
- E. DOSING INTERVAL
- F. THERAPEUTIC DRUG MONITORING
- G. NON-LINEAR PHARMACOKINETICS

CLINICAL PHARMACOKINETICS

- Clinical pharmacokinetics is built upon the fact that a relationship exists between the pharmacological effects of a drug and an accessible concentration of the drug (e.g. in blood or plasma
- This relationship has been documented for many drugs and is of benefit in the therapeutic management of patients

CLINICAL PHARMACOKINETICS

- In drug development- to decide on an appropriate dosing regimen for clinical studies of efficacy
- For clinicians-who need to understand how dosage recommendations in the product information provided with licensed drugs have been arrived at if they are to use the drug optimally

PRESRIBING DIGOXIN....

THE REGULAR DOSE WILL TAKE A LONG TIME TO ACT, ∴ YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

PRESRIBING DIGOXIN....

THE **REGULAR DOSE** WILL TAKE A LONG TIME TO ACT, ∴ YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

Digoxin: British National Formulary

- Nose
 Rapid digitalisation, by mouth, 1-1.5 mg in divided doses over 24 hours: less urgent digitalisation, 250-500 micrograms daily (higher dose may be divided)
- Maintenance, by mouth, 62.5-500 micrograms daily (higher dose may be divided)
- according to renal function and, in atrial fibrillation, on heart-rate response: usual range 125-250 micrograms daily (lower dose may be appropriate in elderly)

Dose Maintenance, in atrial fibrillation, 125-250 micrograms daily

THE MAINTENANCE DOSE WILL TAKE A LONG TIME TO ACT, ∴ YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

MAINTENANCE DOSE

- Clearance in an individual subject is the same at therapeutic doses
- : At steady state concentration (Css)

Rate of drug elimination = $CL_{tot} \times C_{SS}$

MAINTENANCE DOSE

And, at steady state concentration (C_{SS}) Drug dosing rate (X) = drug elimination rate X = CL_{tot}× C_{SS}

MAINTENANCE DOSE = $CL_{tot} \times C_{SS}$

MAINTENANCE DOSE OF DIGOXIN

MAINTENANCE DOSE = CL_{tot}× C_{SS}

 $Cl_{tot} = 77 ml/min$ $C_{SS} = 0.75 ng/ml$ Bioavailability = 70%

PRESRIBING DIGOXIN....

THE MAINTENANCE DOSE WILL TAKE A LONG TIME TO ACT, :. YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

ELIMINATION HALF-LIFE

- Half-life is determined by both clearance and volume of distribution
- Half-life is increased by an increase in volume of distribution or a decrease in clearance, and vice versa

Effects of clearance and volume of distribution in determining half-life				
Drug	Clearance L/hr	Volume of distribution L	Half-life hr	
Ethosuximide	0.7	49	48.0	
Flucytosine	8.0	49	4.2	
Digoxin	7.0	420	40.0	
Morphine	63.0	280	3.0	
Haloperidol	46.0	1 400	20.0	
Chloroquine	45.0	12 950	200.0	

HALF-LIFE

Number of half-lives since tarting constant rate dosing	Mean plasma concentration as a percentage of eventual mean steady state concentration
	%
1	50
2	75
3	87.5
4	93.75
5	96.875

LOADING DOSE

- The loading dose is one or a series of doses that may be given at the onset of therapy with the aim of achieving the target concentration rapidly
- A loading dose is used when starting treatment with a drug with a long half-life in the context of the urgency of the clinical situation
 - e.g. when treating cardiac dysrhythmias with drugs such as amiodarone or digoxin

VOLUME OF DISTRIBUTION

The volume of fluid required to contain the total amount of drug in the body at the same concentration as that present in the plasma

Q = amount of drug in body (g) C = unbound plasma drug concentration (g/liter)

LOADING DOSE - DIGOXIN

Loading dose = $0.5-2.1 \ \mu g/L \ \times 667 \ L$ = $0.3-1.4 \ mg$ As bioavailability is ~70% = $0.3-1.4 \ mg \times 100/70$ Oral Loading dose = $0.4-2.0 \ mg$

LOADING DOSE - DIGOXIN

Nose
Rapid digitalisation, by mouth, 1-1.5 mg in divided doses over 24 hours: less urgent digitalisation, 250-500 micrograms daily (higher dose may be divided)
Maintenance, by mouth, 62.5-500 micrograms daily (higher dose may be divided) according to renal function and, in atrial fibrillation, on heart-rate response: usual range 125-250 micrograms daily (lower dose may be appropriate in elderly)

Rapid digitalisation, by mouth, 1–1.5 mg in divided doses over 24 hours

PRESRIBING DIGOXIN....

THE MAINTENANCE DOSE WILL TAKE A LONG TIME TO ACT, ∴ YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

PRESRIBING DIGOXIN....

125 MICROGRAMS DAILY THE MAINTENANCE DOSE WILL TAKE A LONG TIME TO ACT, ∴ YOU SHOULD GIVE A LOADING DOSE FOR A QUICK EFFECT....

DOSING INTERVAL

- If dosing interval is too far apart,
 - > Peak concentration can reach toxic levels
 - > Trough concentration can go down to subtherapeutic levels
- If the dosing interval chosen to be equal to the $t_{\mbox{\tiny 1/2}},$ then the total fluctuation would be 2-fold
- A two-fold variation is often a tolerable

DOSING INTERVAL

- A dosing interval of about a half life is appropriate for drugs with half-lives of approximately 8-24 hours allowing dosing once, twice or three times daily
- If such a drug has a large therapeutic index, so that a large degree of fluctuation does not result in toxicity, it can be given at intervals longer than the half-life

THERAPEUTIC DRUG MONITORING

- Therapeutic drug monitoring refers to the individualization of dosage by maintaining plasma or blood drug concentrations within a therapeutic range
- Also used in the assessment of drug toxicity

THERAPEUTIC DRUG MONITORING

- This is helpful when,
 - Marked pharmacokinetic variability
 - Concentration related therapeutic and adverse effects
 - Narrow therapeutic index
 - Defined therapeutic concentration range
 - Desired therapeutic effect difficult to monitor

THERAPEUTIC DRUG MONITORING

Category	Example(s)	
Immunosuppressants	Ciclosporine, tacrolimus	
Cardiovascular	Digoxin	
Respiratory	Theophylline	
CNS	Lithium, several antiepileptic drugs	
Antibacterials	Aminoglycosides	
Antineoplastics	Methotrexate	

THERAPEUTIC DRUG MONITORING

- Samples should be collected pre-dose as this is the least variable point in the dosing interval
- Generally samples should be collected after reaching the steady state

THERAPEUTIC DRUG MONITORING

- The ratio between the measured and desired concentrations can be used to adjust the dose appropriately
- Dose (New) = $\frac{C_{ss} (Predicted)}{C_{ss} (Measured)} \times Dose (Previous)$

NON-LINEAR PHARMACOKINETICS

- When the dose of a drug is increased, we expect that the concentration at steady state will increase proportionately i.e. first-order kinetics
- In non-linear pharmacokinetics /zero-order kinetics the plasma drug concentration changes result in steady-state plasma concentrations steep and unpredictable

NON-LINEAR PHARMACOKINETICS

- Usually is due to saturation of either protein binding, hepatic metabolism, or active renal transport of the drug
- Drug is removed at a constant rate that is independent of plasma concentration e.g. ethanol, phenytoin and salicylate